[NK Provocation Index][1] Identification 1 – LDA model

CODE:

import re
import os
import sys
import pandas as pd
import numpy as np
import pandas as pd
from pprint import pprint
import random
import gensim
import gensim.corpora as corpora
from konlpy.tag import Twitter
from operator import itemgetter
import datetime as dt 
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import warnings
warnings.filterwarnings("ignore",category=DeprecationWarning)

data = []
dirname = 'D://nk//data'
header = {}
k = 0
for f_dir in os.listdir(dirname):
    for fname in os.listdir(os.path.join(dirname, f_dir)):
        k += 1
        if k % 10000 == 0:
            print(k)
        f = open(os.path.join(dirname, f_dir, fname), 'r', encoding = 'utf-8')
        data.append([f_dir, f.read()])
        f.close()

#Document specific Preprocessing

a1 = re.compile('등록\s*\:\s*(\d{4}\s*\-\s*\d{2}\s*\-\s*\d{2})')
a2 = re.compile('입력\s*(\d{4}\s*[\.\-]\s*\d{2}\s*[\.\-]\s*\d{2})')
a2_2 = re.compile('(\d{4}\s*[\.\-]\s*\d{2}\s*[\.\-]\s*\d{2})')
a2_3 = re.compile('등록\s*\:\(\d{4}\-\d{2}\-\d{2})')
a3 = re.compile('((?:19|20)\d{6})')
a4 = re.compile('(\d{4}\s*\-\s*\d{2}\s*\-\s*\d{2})')
for item in data:
    k = 0
    for a in [a1, a2, a2_2, a2_3, a4, a3]:
        if a.search(item[1]):
            date = re.sub('[\s\-\.]', '', a.search(item[1])[1])
            k = 1
            data_date.append([item[0], date, item[1]])
            if len(str(date)) != 8:
                print(item[1][:100])
            break
    #if k == 0 :
        #print(item[1][:30])

twitter = Twitter()

def sent_to_words(sentences):
    return twitter.morphs(sentences)  # deacc=True removes punctuations

def remove_stopwords(texts):
    return [[word for word in preprocess(str(doc)) if word not in stopwords] for doc in texts]

def make_bigrams(texts):
    return [bigram_mod[doc] for doc in texts]

def make_trigrams(texts):
    return [trigram_mod[bigram_mod[doc]] for doc in texts]

def preprocess(doc):
    doc = re.sub('\s+', ' ', doc)
    doc = re.sub('[A-Za-z]+[0-9]+', '', doc)
    doc = re.sub('[a-zA-Z]+', ' ', doc)
    doc = re.sub('\s+', ' ', doc)
    return doc

#Remove all the one character words except for the name of country

country_list = ['미', '북', '러', '중', '일', '한', '군', '핵', '당', '말', '남']
data = [[re.sub('[^가-힣\s\_]', '', word) for word in item] for item in data]
data = [[word for word in item if (len(word) > 1) or (word in country_list)] for item in data]

data_words = list(zip(header, data))

#Remove document specific stopwords

stop_words = ['아티클', '중앙일보', '조선일보', '동아일보', '한겨레', '구독', '관련기사', '아티', '클관련', '추가', '지면보기',
'종합', '뉴스', '사진', '밝혔', '이라고', '등록', '라고', '라며', '내용', '보다', '경우', '지역', '위해', '이라는', '그런', '처럼', '이나', '같은', '보다', '는데', '다면', '그것', '이제',
'때문', '다시', '많은', '정도', '일이', '없었', '되었', '인가', '않는', '베스트추천', '기자', '수정']
data_words = [[item[0], item[1], [word for word in item[2] if word not in stop_words]] for item in data_words]

def get_topic(txt):
    corpus = id2word.doc2bow(txt)
    topic = list(lda_model.get_document_topics(corpus))
    return sorted(topic, key=itemgetter(1))[-1][0]

#return topics and the corresponding words and weights.
lda_model.print_topics()


#Drawing Graph

result = [[item[0], item[1], get_topic(item[2])] for item in data_words]
df = pd.DataFrame(result)
df.columns = ['news', 'date', 'topic']
df.date = df.date.astype(int)
df = df[df.date >= 199501]

#Remove errors in date information

for i in range(len(df)):
    if int(str(df['date'].iloc[i])[4:6]) > 12 or int(str(df['date'].iloc[i])[4:6]) == 0:
        print(i, df['date'].iloc[i])
for i in range(len(df)):
    try:
        x = df['date'].iloc[i]
        dt.date(int(str(x)[0:4]), int(str(x)[4:6]), int(str(x)[6:]))
    except:
        print(i, df['date'].iloc[i])

df.drop(df.index[[42981, 43438]], inplace = True)
df.drop(df.index[[65986, 74283]], inplace = True)

#Process date information  

df['date'] = df['date'].apply(lambda x: dt.date(int(str(x)[0:4]), int(str(x)[4:6]), int(str(x)[6:])))
df['date'] = pd.to_datetime(df['date'])

#Adjust sample ratio by putting different weight.

#day

count_d = df.groupby(['date', 'topic']).size().reset_index(name = 'count')
count_d['adj'] = count_d['count']
mask1 = (count_d['date'] < dt.date(2005, 1, 1))
mask2 = (dt.date(2005, 1, 1) < count_d['date']) & (count_d['date']< dt.date(2009, 10, 17))
count_d.loc[mask1, 'adj'] = count_d.loc[mask1, 'count'] * 2
count_d.loc[mask2, 'adj'] = count_d.loc[mask2, 'count'] * (4/3)

#month 

df_ = df.copy()
df_.reset_index()
df_['date'] = pd.to_datetime(df_['date'])
df_.set_index('date', inplace = True)
df_ = df_.to_period('M').to_timestamp('M')
count_m = df_.groupby(['date', 'topic']).size().reset_index(name = 'count')
count_m['adj'] = count_m['count']
mask1 = (count_m['date'] < dt.date(2005, 1, 1))
mask2 = (dt.date(2005, 1, 1) &lt; count_m[&#039;date&#039;]) &amp; (count_m[&#039;date&#039;]<dt>= dt.date(2000,1,1)) &amp; (count_d.date = dt.date(2000,1,1)) &amp; (count_m.date = dt.date(2000,1,1)) &amp; (count_y.date = dt.date(2018, 1, 1))
            count_y.loc[mask3, 'adj'] = count_y.loc[mask3, 'count'] * 6/5
        else:
            return None
        #color = '#00BFFF'
        x = xy['date']
        if adj:
            y = xy['adj']
        else:
            y = xy['count']
        #ax.plot(x, y, alpha = 0.8, c = color, linewidth=1.3)
        #print(label, topic)
        ax.plot(x, y, alpha = 0.7, linewidth=1.3, label = 'topic # : %s(%s)'%(label, str(topic)))
        ax.set_xlim(dt.date(2000, 1,1), dt.date(2018, 12, 31))
        #ax.set_xlim(min(x), max(x))
    #ax.set_title("Spread and GDP", fontsize = 20)
    ax.set_xlabel('year', fontsize = 20)
    ax.set_ylabel('Number of Ariticles' , fontsize= 24)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.grid(color='grey', linestyle='-', linewidth=0, alpha = 1)
    #ax.set_xticks([1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017])
    ax.tick_params(axis = 'both', labelsize = 17)
    ax.legend()
    #if period == 'Y':
    #    plt.xticks(np.arange(dt.date(2000, 12, 31), dt.date(2018, 12, 31), dt.timedelta(731)))
    #else:
    plt.xticks(np.arange(dt.date(2000, 1,1), dt.date(2018, 12, 31), dt.timedelta(731)))
    plt.show()

#Draw Graphs (Day, Month, Year frequency on provocation and peace topics respectively) 
dp([12, 16], ['provocation', 'nuclear'], 'D', adj = True)
dp([13, 14], ['South-North', 'Global'], 'D', adj = True)
dp([12, 16], ['provocation', 'nuclear'], 'M', adj = True)
dp([13, 14], ['South-North', 'Global'], 'M', adj = True)
dp([12, 16], ['provocatoin', 'nuclear'], 'Y', adj = True)
dp([13, 14], ['South-North', 'US-North'], 'Y', adj = True)


#Number of Total Articles

plt.style.use('seaborn-whitegrid')
fig, ax = plt.subplots(figsize = (9.5, 6.5), dpi = 100)
xy = df.groupby(['date']).size().reset_index(name = 'count')
xy = xy[xy['date'] &gt; dt.date(1995, 1, 1)]
#color = '#00BFFF'
x = xy['date']
y = xy['count']
#ax.plot(x, y, alpha = 0.8, c = color, linewidth=1.3<code>)
#print(label, topic)
ax.plot(x, y, alpha = 0.8, linewidth=1.3, label = 'total')
ax.set_xlim(min(x), max(x))
#ax.set_title("Spread and GDP", fontsize = 20)
ax.set_xlabel('year', fontsize = 20)
ax.set_ylabel('Number of Ariticles' , fontsize= 24)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.grid(color='grey', linestyle='-', linewidth=0, alpha = 1)
#ax.set_xticks([1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017])
#ax.tick_params(axis = 'both', labelsize = 17)
ax.legend()
plt.xticks(np.arange(min(x), max(x), dt.timedelta(730)))
plt.show()

답글 남기기

아래 항목을 채우거나 오른쪽 아이콘 중 하나를 클릭하여 로그 인 하세요:

WordPress.com 로고

WordPress.com의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Google photo

Google의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Twitter 사진

Twitter의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Facebook 사진

Facebook의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

%s에 연결하는 중